If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12p^2+2p-18=0
a = 12; b = 2; c = -18;
Δ = b2-4ac
Δ = 22-4·12·(-18)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{217}}{2*12}=\frac{-2-2\sqrt{217}}{24} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{217}}{2*12}=\frac{-2+2\sqrt{217}}{24} $
| -43=4x-7 | | 7.25x2+15x+16=0 | | 94+(12x+50)=180 | | 3a+12=4a-1 | | (x+61)+(x+73)=180 | | 2a^2+a-45=0 | | 15=4y+23 | | 61=7-9v | | x+4/9=11/3 | | 10v^2+1=0 | | 32x+16=32 | | b^2-4+4=0 | | y=650,000(1.04)⁷ | | Y=108-2x | | x=0.35x | | 14x+(x+75)=180 | | 7x−13=22 | | 96=6(k=8) | | 4x+11=x+14 | | p+20+11p+4p=180 | | (3n-8)(2n+6)=0 | | t+19+2t+4t=180 | | (8+16)8=z2 | | 105+8x=7x+23 | | 5x+3x+92=180 | | 11x(10)-5=180 | | 5x,9=180 | | 2*m=6 | | 3(x+7)=2x-11 | | |2x|=100 | | 2.2x=1.8 | | 5y+6=24-y |